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It is shown that the probability distribution for the infinite-volume, free-boun- 
dary-condition Ising ferromagnet on the Bethe lattice under zero external field is 
infinitely divisible with respect to the group operation of pointwise mul- 
tiplication of spin variables. 
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1. I N T R O D U C T I O N  A N D  PRELIMINARIES 

The classical notion of an infinitely divisible probability distribution on the 
real number line refers to a factorization property with respect to all k-fold 
convolutions that is known to hold for a great many familiar distributions, 
e.g., Gaussian, Gamma, Poisson. The general utility of this property in 
applications lies in the consequent representation of the Fourier transform 
by the so-called Levy-Khinchine formula (see Feller(a)). Previously in the 
statistical physics literature an interesting perspective on renormalization 
groups was formulated by Jona-Lasinio (6) from the point of view of infinite 
divisibility. Also, De Coninck and de Gottal (1'2) have established an 
interesting connection with the moment generating function of the 
distribution of block sums for Ising ferromagnets. These results by 
De Coninck and de Gottal (1) are made especially intriguing by the obser- 
vation that since the Fourier transform of an infinitely divisible distribution 
can have no real zeros (see Theorem2, p. 557, Feller(4)), its moment 
generating function has no zeros on the imaginary axis. Therefore, it 
follows from the Lee-Yang theorem that the block sums of spins cannot 
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have an infinitely divisible distribution in the classical sense. So one expects 
the connection between such spin distributions and classical infinitely 
divisible distributions, as in De Coninck and de Gottal, (~) to be somewhat 
indirect. 

In the present paper we pursue a factorization property for the spin 
distribution of Ising ferromagnets that is nonclassical infinite divisibility 
only insofar as convolutions are taken with respect to a multiplicative 
group operation on spin configurations instead of the usual additive group 
operation on the real number line. This approach also rests on the now 
standard idea due to Ruelle, (~3) Lanford and Ruelle, (8) Dobrushin, (3) and 
Minlos (9) of defining a (magnetic) Gibbs state as a probability measure on 
the space 12 of all possible spin configurations. The general utility of these 
ideas for applications is still based on the corresponding Levy-Khinchine 
formula, which in this formulation applies to the block correlations 
(o-i~o-i2...~rik). For example, as we will see shortly, certain standard 
correlation inequalities are made transparent by the Levy-Khinchine for- 
mula. 

The basic mathematical problem whose solution is sought here 
requires no special structure for its formulation. Formally, in the case of 
spins {an} on a set A of sites distributed according to the infinite-volume 
limit of Ising model probabilites of the form 

Prob = ~ exp JA i ]  an (1.1) 
A n E A  

the problem is to show that for each integer k ~> 1 there is a _+ 1-valued spin 
system {~n} (defined by some probability distribution on spin con- 
figurations depending on k and whose expectation is denoted by ( . )~)  such 
that for any finite set of sites D c A, 

. . . .  

The general extent of the models (1.1) for which the factorization 
property (1.2) holds is by no means clear. In particular, we do not know 
whether the standard nearest neighbor models are infinitely divisible at any 
finite temperature in dimension two or more. In the present paper we con- 
sider the simplest exactly soluble case. Namely, we consider the case when 
A - T N  consists of the vertices of the infinite connected graph without 
loops such that each vertex is adjacent to precisely N +  1 distinct vertices. 
T N is referred to as a Bethe lattice or tree graph. The coupling constants 
will be taken as pairwise and nearest neighbor for this graph structure. Let 
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8(n) denote the (boundary) set of neighbors of the site n. Then in (1.1) we 
take 

J > 0  if A = { m , n } ,  rn~_8(n) 
J A = otherwise (1.3) 

The infinite-volume Ising model o n  T N under zero external field is a 
probability measure on the space f2 = { -  1, 1 } r~ of spin configurations 
having the following prescribed local structure in the sense of Lanford, 
Ruelle, Dobrushin, and Minlos: 

Prob(an = - 1 [ a,~ = - 1 at exactly r neighbors m of n) 

= const �9 e flJ(2r N 1) 

r = 0 ,  1 ..... N +  1 (1.4) 

where q = 1 - p  and 

f l j  = 1 log(p/q)  (1.5) 

The case in which p = q =  �89 corresponds to infinite temperature (or no 
interaction) and p ~> 1 corresponds to ferromagnetism. 

Note that in the case N =  1, T~ is simply the one-dimensional integer 
lattice. Preston (12) has shown that TN is a phase transition graph for the 
local structure (1.4) if and only if N~>2; see also Mfiller-Hartmann and 
Zittartz (m) for an analysis in terms of free energy. However, the probability 
measure Pp defined by (1.6) below is always among those probabilities 
having the local structure in (1.4). Moreover, Pp is of Markov chain type 
with symmetric "transition matrix" M in the sense of Preston (12) and 
Spitzer. (14) 

Let us now turn to the precise formulation of the ideas. For 0 < p < 1, 
q = 1 - p ,  let Pp denote the probability distribution given by 

P p ( X n  -~ gn, n e D) = �89 (1.6) 

where D is a finite connected set of sites in TN, ~ = (e, In ~ D) is a function 
on D taking values in { -  1, 1 }, and 

D )  = + 
, I~D rnEc~(n)caD 4 (1.7) 

(1.8) no(e,D)= Z - - 4  
nED m E O ( n ) ~ D  
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Under coordinatewise multiplication of configurations and with the 
product topology, ~2 is a compact, Abelian, topological group. The (con- 
tinuous) characters of g2 are given by 

v~(w)= ~ w., w~C~ (1.9) 
n e D  

for finite subsets D of TN. The (topological) dual group of ~2 can be iden- 
tiffed with the collection ~ of finite subsets of T N with the discrete topology 
and with symmetric difference A as the multiplication in ~. 

A probability measure P on f2 is called infinitely divisible if for each 
integer k t> 1, there is a probability measure Pk on s such that 

p = p , k  for k = l , 2  .... ( t . t0)  

The following theorem will be established. 

T h o o r o m  1.1. For p >~ �89 Pp is infinitely divisible. 

Theorem 1.1 extends an earlier result of Waymire (~s) to a larger class 
of graphs. The calculations in this latter reference were based on the simple 
observation that if {Xn: n ~ Z}, { Y~: n e Z} are independent Markov chains 
distribution as Ppl and Pp2, respectively, then the conditional distribution 
of Sn+l =X,+~  Yn+l given (Xn, Yn), jointly, is a function of the product 
Xn Y,. This is no longer true for TN with N>~ 2/5) 

As an application of Theorem 1.1, we get formulas for the D-point 
correlations of Pp for all D E ~, as given by the following corollary. 

Corollary 1.2. Let p>�89 Then for each D e ~ ,  

wherefp(D)= +oc for # D  odd, andfp(D)=Fp(zv= - l )  for # D  even, in 
which Fp is a a-finite (nonnegative) measure on (2, the so-called Levy 
Khinchine measure, which is finite outside of every neighborhood of the 
identity a+ sf~, i.e., a + ( n ) =  +1 for each n e  Tu. 

Remark. In the case p = �89 the random field has independent values, 
so that one can write down the formula in Corollary 1.2 by taking 
fm(~J) = 0 andfl/2(D)= +oe otherwise. In general the explicit formula for 
the Levy-Khinchine measure does not seem to be as simple to describe as 
in the one-dimensional case. The combinatorics for disconnected blocks are 
somewhat unwieldy; some calculations are given in Glaffig (s) in this con- 
nection. However, as illustrated below, a virtue of the approach here is that 
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some properties of correlations follow from the Levy-Khinchine formula 
and purely measure-theoretic properties in place of otherwise explicit for- 
mulas. 

For p ~ �89 the so-called first generalized Griffith's inequality, as for- 
mulated by Kelly and Sherman, ~7) is immediately transparent from 
Corollary 1.2 and the subsequent remark, namely (1--[n~Da~)>~O. The 
second general&ed Griffith's inequality, namely 

also follows immediately as a consequence of infinite divisibility through 
Corollary l.2 and the simple measure-theoretic properties of Fp. 
Specifically, 

fp(D ziG) = Fp(YOa a = - 1 )  

=rp(TD= --1, 7G= 1) + Fp(TD= 1, 7G = --1) 

rp(yD = --1) + gp(76 = --1) 

= fAD)  + f , ( a )  (1.11) 

Note that the GKS inequalities are purely a consequence of infinite 
divisibility as formulated here. The arguments in (1.11) depend only on the 
general validity of the Levy-Khinchine formula in Corollary 1.2. 

Another, though less standard, set of correlation inequalities, whose 
feasibility (as well as nonfeasibility) was first considered by Kelly and 
Sherman, (7) can also be shown to follow from infinite divisibility (see 
Waymire(15.16)). 

2. P R O O F S  

The objective here is to prove Theorem 1.1 and its corollaries. This 
will be accomplished in stages. 

kemma 2.1. If {Zn} is a random field on t2 with distribution P, 
and if for each connected D e ~, 

and 

where 0 < p < 1, then 

P(Zn= 1, nr  �89 #D-1 

P(Z,= --1, ne D)= �89 

P=f, 
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Proof. It suffices to show (1.2) for each connected D e E .  If # D =  1 
or 2, then (1.2) follows immediately from simple calculations. For a 
function e =  { g , : n e D }  with values in { - 1 ,  1} D, let 

D+={neD:g,,= +1}, D = { n e D : e . = - l }  

For # D ~ > 2  there is an rneD=-D+ ~oD such that D\m is connected. 
First consider the case m e D+ .  We shall use induction on # D +  for this 
case. If # D +  = 1, then 

P ( Z m =  1, Z n = --1, n e D )  

= P ( Z , = - I ,  neD ) - P ( Z ~ = - I ,  neD vo{m}) 
=�89 1_�89 
= � 8 9  

= �89 

Applying the induction hypothesis, we get 

P(Z,,,=l,Z~=l, n e D + \ m , Z . = - l ,  neD ) 

=P(Zn=l,  neD+\rn, Z . = - l ,  neD ) 

- P ( Z , = l ,  n e D + \ m , Z , = - l ,  neD wm) 
l r~ne(e,D\m),.tno(~,D\m) l nne(e(m~,D)nno(eJm),D) 

where g~m)= g, if n # m and er m) = -e, ,  if n = m. Formula (1.2) now follows 
by considering cases and noting parity balance, 

n~(e, D\m)+no(g, D\m)=ne(e, D)+no(g, D ) -  l 

n~(g (m), D) + no(g r D) = ne(g , D) + no(e, D) 

The case m e D_ can be handled similarly by induction on # D . | 

Because of the asymmetry possibilities, one of the equations in Lemma 
2.1 alone is not sufficient to get the result. 

Proposition 2.2. Ppa * Ppz = Pp3, where 

p3=plp2+qlq2, q /=  1 - p i ,  i = 1 , 2  

Proof. Let {Xn} and { Yn} be independent random fields distributed 
a s  Pm and Pp2, respectively. Then {Z n = X n I1,,} is distributed a s  Pm* Pp~" 
For  connected D e ~, 
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P r o b ( Z ,  = 1, n e D) 

= ~ Prob(X~ = Y. = g~, n e D) 
e={en}~{ l,l}D 

= E  ep , (X .=e . ,neD)  Pp2(Y.=e,,,neD) 

--~e~(plP2)ne(e'D)(qlq2)n~ 
(#71) = -  ~ 2 (plp2)k(qlq2) # ~  

4 k=o 

1 
2 (PlP2+q~q2)#D-I 

The case for P r o b ( Z , =  - 1 ,  neD) is similar. | 

Proof of Theorem 1.1. In view of Proposi t ion 2.2, we have 

P*~=Pp., n = l ,  2 .... 

where 

So, 

pl=p,  q l = q = l - p  

p~=pp, l+qq ._L=(p-q )P~_ l+q ,  n>~2 

191 

where 

p,, = �89 + [2 - "  + ' (p  - �89 1/~ (2.2) 

Proof of Theorem 1.2.  The result follows immediately from 
Theorem 1.1 by an applicat ion of the Levy-Khinch ine  representation;  see 
Parthasarathy311) [ 

pn=(p--q)" '(p--�89 -1 ~, n = l , 2  .... 

Now simply observe that fn(x) = ( 2 x -  1 )" -  l ( x -  �89 + �89 n > 1, maps [• 1 ] 
onto  [�89 1] and is strictly increasing. Therefore,  Pp is infinitely divisible for 
p>�89 ! 

Note. It follows from the p roof  of Theorem 1.1 that for p ~> �89 given 
any positive integer n, 

Pp = (2.1) 
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A C K N O W L E D G M E N T  

T h e  a u t h o r s  wish  to t h a n k  an  a n o n y m o u s  referee for  m a n y  helpful  

r e m a r k s  on  an  ear l ie r  draft .  
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